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The behavior of a binary mixture of non-additive hard spheres with positive non-
additivity parameter is investigated. The coexistence curves are calculated with a high
accuracy for a few system sizes. The applicability of semigrand ensemble simulation
method to calculation of the coexistence curve and the critical properties of mixtures is
compared with other simulation method.
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The calculation of the critical point parameters by computer simulation is a real
challenge. The difficulties result from the fact that the correlation length diverges to
infinity when the critical point is approached, whereas the size of the simulated sys-
tems is limited, due to computer resources. Thus, near the critical point, the correla-
tion length is greater than the linear dimension of the simulation box. Additional
problem is the effect of critical slowing down, which makes the simulation time-
consuming. The knowledge of the critical point parameters and the shape of the coex-
istence curve close to the critical point is important, since it can be used to identifica-
tion of the universality class of the system.

The model system for which the critical behavior is well established is the Ising
model. The Ising model is equivalent to the lattice-gas model in which the positions of
the particles are restricted to the lattice sites and also to an incompressible binary mix-
ture. For the bulk critical phenomena the restriction of the positions of the particles to
the lattice sites plays no role and the simple fluids near the gas-liquid critical point or
binary fluid mixtures near the consolute point belong to the Ising universality class.
However, when the fluid is confined in narrow pores, with the pore thickness equal to
several lattice spacings (or molecular diameters), the restriction of the positions of
the particles to the lattice sites may play an important role. It is therefore important to
know the behavior of a simple model fluid with continuous degrees of freedom near
the critical point. Such knowledge will enable the investigation of the differences in
the critical behavior of fluids in porous materials from the bulk critical behavior. The
question whether the fluid confined in a porous material belongs to a different univer-

*Dedicated to Prof. Jan Stecki on the occasion of his 70th birthday.



518 W.T. Gozdz

sality class remains open. Computer simulations of a simple model fluid in porous
media are the best tool to answer such question. Moreover, the comparison of the
simulation data with the theoretical results is a very useful check of the accuracy of
the theory. Especially for a hard spheres fluid such accurate data are important, since
the hard spheres fluid is often used as a reference system in perturbation theories.

Here, we present the results of computer simulations of coexistence for the model
system of a non-additive hard spheres fluid, which is often called Widom-Rowlinson
model [1].

The model: We study a mixture of symmetric non-additive hard spheres [1] with
the interaction potential defined by:

o if r<o,,

Uay(r) = { (M

0 if r>o,

where indices o € {4,B} andy € {4,B} describe the species. The length scale is set by
A component hard sphere diameter 6 44. For symmetric non-additive mixtures

OBB = O44 (2)
and
645 = 1/2(c44 T op)(1 + A) 3)

where A is a non-additivity parameter. In our case A = 0.2 for all calculations. Above
the critical density, the mixture separates into two phases: one phase rich in compo-
nent A and the other rich in component B. The symmetry of interactions imposes for
the two phases I and II in equilibrium the following conditions:

Xy =X, X=Xy )
and
wy=pY =g =ug ®)

wherep! and x! are the chemical potential and the composition of o component in the
i-th phase respectively. The composition of the coexisting phases is symmetric. An
interesting feature of the model is the fact that the internal energy is zero and the phase
transitions are entropically driven.
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The Monte Carlo method: We use the semigrand Monte Carlo simulation method
[2,3] to model an open system in contact with a reservoir. In this method the system is
simulated under constant total number of particles N, total volume V, temperature T, and
the difference of the chemical potential of one species with respect to an arbitrarily cho-
sen species. Thus, the number of molecules of each species fluctuates, while the total
density remains constant. The distribution of microstates I in the semigrand ensemble at
constant volume for n-component mixture is given by:

PN, V, Tga D) o« [T %exp(BNa A® +Nln V—BU(T)) 6)

where A%, =p;, —p) and pg =p, —In(A}), Ag = /h*/Qnm,k,T) is the thermal de
Broglie wavelength of particles of type a and B = 1/k3T is the inverse temperature.
For two component systems:

N
1
P(N, V, T, An°, T)
7\;1 (NB)!(N _NB)!

exp(BNz An® + N'In ¥V — BUT)) 7

where Ap’ =p% — Y, N, is the number of particles of the component a, o € {4, B}.
The realization of the semigrand ensemble Monte Carlo simulation for symmetric
non-additive hard spheres requires two kinds of moves: translation and identity
change. For a symmetric binary hard spheres mixture, the internal energy and the
chemical potential difference are both zero. Thus, the probability of identity change
is given by ® = min{1, Q,_,,}, where

P, N,
5= new _ 8
QA ’ Po[d NB +1 ( )
if a molecule A is converted into a molecule B (4 — B) and
P N,
— new __ 9
QB o Pald NA +l ( )

if amolecule B is converted into a molecule A (B — A4). For this choice of acceptance
criteria, the identity change moves are performed in the following way: First a species
A or B is chosen with equal probability, next a molecule of this species is chosen ran-
domly and converted into a molecule of the other species with acceptance probability
given by (8) or (9). For translation moves the maximum displacement is chosen to ob-
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tain 50% acceptance ratio. The identity change and translation move are chosen
randomly with the ratio of one exchange move per ten translation moves. The equi-
librium values of the mole fraction and errors are calculated from the histograms of
the mole fraction taken during the simulation. The accuracy of the histogram is deter-
mined by the total number of particles in the simulation box N. The histogram near the
equilibrium values is approximated by the Gaussian. The mean value of the Gaussian
is taken for the equilibrium value of the concentration. The errors are determined
from the width of the Gaussian.

We have also performed the simulation with a variant of Gibbs ensemble Monte
Carlo method [4], where the particle transfer moves between boxes are omitted.
Therefore, the number of molecules in each simulation box is the same (N = N"') and
the volume of the boxes is the same (¥’ = V'"') during the simulation, while the compo-
sition changes. The equilibration of the chemical potential of both components is ob-
tained by mutual identity change of two randomly chosen molecules of different
species in two simulation boxes. That is when a molecule A is converted into a mole-
cule B in box one, at the same time a molecule B is converted into a molecule A. The
acceptance probability for the identity change move is given by ® = min{ 1, Q},
where

Q — Pnew _ N/: NZ;I

N I (10)
P, Nz+1 Nj+1

Here, we also take the advantage of the symmetry of the mixture. One may expect that
the simulations in the Gibbs ensemble would give lower fluctuations of the composi-
tion in each phase, due to the fact that identity change moves are dependent, because
they are performed simultaneously in two simulation boxes. Thus, the acceptance ra-
tio for the identity change moves should be lower than in the semigrand ensemble and
the fluctuations of composition should be smaller. Such property of the Gibbs ensem-
ble allow for more precise calculations near the critical point, where the fluctuations
become significant. The fluctuations of the composition in the Gibbs ensemble are in
fact smaller, but only a little. This is reflected in the error bars, which are smaller for
the Gibbs ensemble calculations than that for the semigrand ensemble. Fig. 1 shows
the coexistence curves calculated in NVT semigrand and NVT Gibbs ensemble for
the total number of particles N=256 and N=256 + 256 respectively. The composition
of'the coexisting phases, x = N4/(N4+ Np), is plotted as a function of packing fraction,
N=n4+Mg=16(N,40,44/V)+ n/6(Npcpp/V). Only half of the phase diagram is pre-
sented, since the phase diagram is symmetric due to the symmetry of the mixture.
Therefore, the critical concentration is always x4 = 0.5 and the composition of coex-
isting phases fulfill the relation x4 = 1 — x3. The results obtained by the Gibbs and
semigrand ensemble are identical. The same agreement between the Gibbs and
semigrand ensemble was obtained in simulations of symmetric square well mixtures
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Figure 1. Comparison of coexistence curves for N =256 particles in the semigrand ensemble and N=256
+256 particles in the Gibbs ensemble. Circles, triangles up —this work, triangles down —[5].

[3]. Itis interesting to note that the system size effects are exactly the same for simula-
tions in the semigrand ensemble and the Gibbs ensemble. We have observed that the
values of the mole fraction near the critical point are the same for the same number of
particles in the simulation box. In the Gibbs ensemble simulations, the number of
molecules present in each simulation box is half of the total number of molecules tak-
ing part in the simulation. Thus, in the Gibbs ensemble simulation, it is necessary to
simulate two times more molecules than in the semigrand ensemble simulation, to ob-
tain the same accuracy.

For a symmetric mixture the Gibbs ensemble Monte Carlo method is less advan-
tageous than the semigrand ensemble method. The former requires simulation of two
times more molecules to achieve the same accuracy, as obtained in the semigrand
Monte Carlo simulations.

We have also compared the results of NVT semigrand ensemble with NPT
semigrand ensemble calculation from [6] for two different system sizes. In both cases
the agreement between NPT and NVT semigrand calculation for higher packing frac-
tion is good, but near the critical point the two-phase region obtained by the NPT
method is smaller, see Fig. 2 and 3. However, the results agree within the rather large
error bars in Fig. 3. Another feature, present in the NVT and absent in the NPT
semigrand simulations, is the strong system size dependence of the coexistence curve
near the critical point. Similar behavior was observed in [3] for symmetric square
well mixture. It has to be noted that the results obtained with the NVT semigrand en-
semble for N =864 are in very good agreement with the results obtained in the NVT
Gibbs ensemble from [5] for N = 864 + 864 particles, where particles transfer moves
were employed.
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Figure 2. Comparison of coexistence curves for N=1500 particles in NPT and NV T semigrand ensemble.
Circles — this work, triangles — [6].

Critical packing fraction: The critical packing fraction of symmetric non-
additive hard spheres mixture with positive non-additivity parameter A=0.2 was pre-
viously estimated in a few simulation studies: in [7] by molecular dynamics simula-
tions, in [5] by Gibbs ensemble simulation method and in [6] by NPT semigrand
ensemble. In [5] the implemented Gibbs Ensemble method used particle transfer
moves, which are inefficient for dense fluids. Different simulation methods as well as
different system sizes were used in these studies. The critical density n. is strongly
size dependent. Therefore, comparison between different results should be done care-
fully, with indication of the system size. We use the scaling relation to estimate the
critical packing fraction (12) for a given system size, similar to the one used in estima-
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Figure 3. Comparison of coexistence curves for N = 864 particles in the NVT semigrand ensemble and
NVT Gibbs ensemble with particle transfer and for N = 864 NPT semigrand ensemble. Dia-
monds — this work, circles — [5], triangles — [6].
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tion of the critical temperature (11) fraction. It is assumed that the mixture of
non-additive hard spheres belongs to the Ising universality class.
In general one can write that the order parameter near the critical point behaves as

1-- (11)

where  is the order parameter (for example density, composition, magnetization)
and ¢ is some intensive thermodynamic parameter (for example temperature, chemi-
cal potential). The subscript c indicates the value of the parameter at the critical point.
The B is the critical exponent associated with the order parameter and assumes the
same value for substances belonging to the same universality class. For the I[sing uni-
versality class in 2D, 3 is known exactly and equals 3 = 1/8. In 3D only an approxi-
mate value of B is known from computer simulations [8], B = 0.3258. In analogy to
(11) one can write for an athermal fluid mixture:

i
xA (n) B xc

X

c

(12)

ocn—l
n.

where x4(1) is the composition of the coexisting phases at the packing fraction n, x. is
the composition at the critical point (for symmetric mixture x. = 0.5 by definition),
and n.is the critical packing fraction. (12) is used to estimate the critical packing frac-
tion from the simulation data. The data near the critical point are fitted to (12) with the
exponent B=0.3258. Itis assumed that the non-additive hard spheres mixture belongs
to the Ising universality class. Very good agreement between the fit and the data is ob-
tained.

There exist a few simulation studies, where the critical packing fraction is calcu-
lated for the symmetric non-additive hard spheres binary mixture with non-additivity
parameter A=0.2. The chronologically first estimates are based on molecular dynam-
ics simulations of [7]. 256 particles were used and the critical packing fraction was
estimated to 1.(N=256)=0.22+0.02. This value is higher than that calculated from
our semigrand and Gibbs ensemble simulations for the same system size. We ob-
tained N(N = 256) = 0.2166£0.0005 with the higher accuracy calculations. This
discrepancy may be attributed to the difficulties in estimation of the values of composi-
tion for coexisting phases in molecular dynamics simulation near critical tempera-
ture. In molecular dynamics simulation the composition of coexisting phases is
obtained indirectly, while in the Monte Carlo methods, employed in our study, we get
the composition directly from the simulations.
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In [5] the critical packing fraction was estimated with a much higher precision by
the Gibbs ensemble simulation method. For much larger system size the critical pack-
ing fraction was calculated as n (N = 864 + 864) =02175"0 10> . It agrees within the er-
ror bars with our estimates n.(N = 864) = 0.2205+0.0006 from the semigrand
ensemble simulations.

In [6] the critical packing fraction was estimated for the system size N = 1000 to
N(N=1000) =0.2225%0.0003 by using simulations in constant pressure semigrand
ensemble. This is in disagreement with our results for the system size closest to N =
1000. This discrepancy comes from the different way of calculating the mole fraction
of'the coexisting phases. In our simulations we take for the equilibrium mole fraction
the value of the mole fraction at the maximum of the mole fraction histogram taken
during the simulation. Thus, we do not count the configurations, where the fluid be-
comes mixed. Such configurations are the result of the small system size of the simu-
lated fluid. If one takes these configurations to calculate the mole fraction, the value
of'the equilibrium mole fraction becomes smaller and the critical packing fraction es-
timated from such data near the critical point is higher. Itis intriguing that the critical
density estimated in [6] is very close to the critical density for the large system size we
have simulated, N=2048, which is n.(N=2048)=0.2216£0.0006. We attribute this
fact to pure coincidence.

We have observed a strong system size dependence near the critical point. Fig. 4
shows the difference between the coexistence curves for two system sizes N=256 and
N = 2048. The critical packing fraction 1. significantly depends on the number of
molecules used in the simulation. Such behavior should be expected, based on the fi-
nite size scaling hypothesis [9]. From the calculations performed for N € {256, 500,
864, 2048 } we see that the system size effects for N > 256 become negligible at the
packing fraction n = 0.3, for which the mole fraction of coexisting phases is x, =
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Figure 4. Coexistence curves for the systems with N € {256,2048} molecules.
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0.012. This is much above the critical packing fraction n.. Thus, the critical packing
fraction must be calculated with extreme care.

In [10] the crossover from the Ising to the mean field behavior near the critical
point was observed for the two-dimensional Ising model. It was argued that near the
critical point the correlation length diverges and the finite size of the simulation box
influences the behavior of the fluid in such a way that it behaves as in the mean field.
We have not seen the crossover from the mean field limit to the Ising limit, as it was
seen in the studies of the two-dimensional Ising [10] and the square well fluid [11].
Our calculations definitely support the hypothesis that non-additive hard spheres
mixtures belong to the Ising universality class.
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